EL BAJO DE ESPÍRITU SANTO; PUNTO CALIENTE DE ABUNDANCIA BIOLÓGICA AFUERA DE BAHÍA DE LA PAZ

Eduardo González -Rodríguez, Armando Trasviña -Castro, Alejandro Ramos -Rodríguez

Abstract


El Bajo Espíritu Santo (EBES) es una montaña submarina localizada a 9 millas náuticas del extremo norte del archipiélago del Espíritu Santo, afuera de Bahía de La Paz, el cual es considerado un punto caliente de biodiversidad y biomasa. Algunos procesos que enriquecen el bajo son advección y transporte vertical, ocasionado principalmente por mareas y corrientes que chocan con la montaña. Asimismo, existe retención de organismos, particularmente zooplancton, causando enriquecimiento biológico. Así, para identificar la variabilidad de los procesos estacionales e interanuales que la afectan se realizó una revisión bibliográfica sobre hidrografía, dinámica y biología del EBES, que se complementa con análisis de series de tiempo utilizando información satelital sobre temperatura superficial del mar, clorofila superficial, productividad primaria neta y profundidad de la zona eufótica. Los resultados indican que dentro de los principales procesos que enriquecen al bajo se encuentran la mezcla debida al corte vertical de las corrientes, el transporte vertical ocasionado por corrientes de mareas que chocan con la montaña, la advección mediante chorros de corriente originados en el interior de la bahía y/o remolinos del Golfo de California, y la retención de organismos del zooplancton en la vecindad de la montaña por el obstáculo que esta impone. Se muestran dos periodos de productividad:  primavera y verano, i.e., un régimen bimodal con períodos dominantes de 12 y 6 meses respectivamente. Adicionalmente, existe variabilidad inter-anual dominada por periodos de 5 y 7.5 años asociada a ENSO. La combinación de factores confiere a EBES capacidad de enriquecimiento de nutrientes y plancton a lo largo del año, lo que atrae consumidores secundarios y depredadores tope, convirtiéndolo en un punto de gran actividad biológica.

Bajo Espitritu Santo; biological abundance hotspot off Bahia de La Paz

ABSTRACT. Bajo Espíritu Santo (EBES) is a submarine mountain located 9 nautical miles from the northern end of the Espíritu Santo archipelago, outside Bahia de La Paz. It is considered as a hotspot of biodiversity and biomass that has motivated studies to understand the processes that make it an area of high biological activity. Processes that enrich the EBES are advection and vertical transport, mainly caused by tides and currents that collide with the mountain. Also, there is retention of organisms, particularly zooplankton, which favors a biological enrichment. A review on hydrography, dynamics and biology is presented, complemented with time series analysis of satellite information on sea surface temperature, surface chlorophyll, net primary productivity, and euphotic zone depth, to identify the variability of seasonal and interannual processes affecting the mountain. The main processes that enrich EBES are mixture due to the vertical cut of the currents; the vertical transport caused by tidal currents that collide with the mountain; advection by jet currents originating in the interior of the bay and/or eddies from the Gulf of California; the retention of zooplankton organisms in the vicinity of the mountain. Two periods of productivity, one in spring and the other at late summer indicate a bimodal regime with dominant periods of 12 and 6 months respectively. Additionally, there is an inter-annual variability dominated by periods of 5 and 7.5 years associated with ENSO. Combination of these factors give EBES its ability for nutrient and plankton enrichment throughout the year, which attracts secondary consumers and top predators, turning it into a point of great biological activity.


Keywords


Montaña submarina; Golfo de California; productividad biológica

Full Text:

FULL TEXT PDF

References


Amador-Buenrostro, A., A. Trasviña-Castro, A. Muhlia-Melo & M.L. Argote-Espinoza. 2003. Influence of EBES seamount and Farallon basin on coastal circulation in the Gulf of California, Mexico. Geofísica Internacional, 42(3): 407-418

Boehlert, G. W., W. Watson & L. C. Sun. 1992. Horizontal and vertical distributions of larval fishes around an isolated oceanic island in the tropical Pacific. Deep Sea Res., 39: 439-46.

Boehlert, G.W. & A. Genin. 1987. A review of the effects of seamounts on biological processes. 319–334, In: Keating, B., P. Fryer, R. Batiza, & G. Boehlert (Eds.), Seamounts, Islands and Atolls. Geophysical Monograph, vol. 47. American Geophysical Union, Washington, DC.

Darnitsky, V. B. 1985. Some causes of variability in the bio and fish–productivity of the mesopelagial (near seamounts). 102–123, In: Ministry of Fisheries of the U. S. S. R. All–Union Scientific Research Institute for Fisheries and Oceanography (VNIRO). Investigation and rational utilization of the bioresources of the open ocean (fishes of the mesopelagial). Papers of the All–Union Conference, Moscow. Translation 121 by W. G. Van Campen, SFCHL. National Marine Fisheries Service, NOAA, Honolulu, Hawaii 96822–2396.

Emery, A. R. 1972. Eddy formation from an oceanic island: ecological effects. Caribbean Journal of Science, 12: 121–128

Emery, W. J. & R.E. Thomson. 2004. Data Analysis Methods in Physical Oceanography. Elsevier.

Emilsson, I. & M.A. Alatorre. 1997. Evidencias de un remolino ciclónico de mesoescala en la parte sur del Golfo de California. 173–182, In: Lavín, M.F. (Ed.), Contribuciones a la Oceanografía Física en México. Monografía No. 3. Ensenada, B.C., México: Unión Geofísica Mexicana.

Fedorov, V. V. & S.D. Chistikov. 1985. Landscapes of seamounts as indicators of the biological productivity of the surrounding waters. III Congress of Soviet Oceanologist, Leningrad, 3:131-132

Figueroa-Rodriguez, J.M., S.G.L. Marinone-Moschetto & M.F. Lavín-Peregrina. 2003. A description of geostrophic gyres in the southern Gulf of California. 237-255, In: Velasco-Fuentes, O.U., J. Sheinbaum & J.L. Ochoa-de la Torre. (Eds) Nonlinear Processes in Geophysical Fluid Dynamics. Kluwer Academic Pub. ISBN: 1-4020-1589-5. (PA: 9657)

Forges, B.R., J.A. Koslow & G.C.B. Poore. 2000. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature, 405: 944-947

Gaxiola-Castro, G., S. Álvarez-Borrego, M.F. Lavín, A. Zirino, A. & S. Nájera-Martínez. 1999. Spatial variability of the photosynthetic parameters and biomass of the Gulf of California phytoplankton. J. Plankton Res, 21: 231–245.

González-Armas, R. 2002. Agregación de larvas de peces en el Bajo de Espíritu Santo en el Golfo de California, sus cambios en los patrones de distribución y los procesos oceanográficos que los influyen. Tesis Doctoral. Centro de Investigaciones Biológicas del Noroeste, S.C. 163 p.

González-Armas, R., R. Funes-Rodríguez & A. Amador-Buenrostro. 2008. Estructura de la comunidad de larvas de peces en una montaña submarina del Golfo de California. Hidrobiológica, 18(1): 77-88.

González-Rodríguez, E., H. Villalobos, V.M. Gómez-Muñoz & A. Ramos-Rodríguez. 2015. Application for extracting and modeling periodicities in time series. Journal of Open Statistics, 5: 604-617

Green-Ruíz, Y.A., & A. Hinojosa-Corona. 1997. Study of the spawning area of the northern anchovy in the Gulf of California from 1990–1994: using satellite images of sea surface temperatures. J. Plankton Res. 19: 957-968.

Hamman, M. C. G., T.R. Baumgartner & A. Badán-Dangon. 1988. Coupling of the Pacific sardine (Sardinops sagax caeruleus) life cycle with the Gulf of California pelagic environment. CalCOFI Reports, 29: 102-109.

Jorgensen, S. J., A.P. Klimley, A. Muhlia-Melo & S.G. Morgan. 2016. Seasonal Changes in fish assemblage structure at a shallow seamount in the Gulf of California. PeerJ, 4:e2357; doi:10.7717/peerj.2357

Ketchum, J. T., F. Galván-Magaña, F. & A.P. Klimley. 2013. Segregation and foraging ecology of whale sharks, Rhincodon typus, in the southwestern Gulf of California. Environ. Biol. Fish., 96: 779–795. doi:10.1007/s10641-012-0071-9

Klimley, A. P. & S.B. Butler. 1998. Immigration and emigration of a pelagic fish assemblage to seamounts in the Gulf of California related to water mass movements using satellite imagery. Marine Ecology Progress Series, 49: 11–20.

Klimley, P. A. & D.R. Nelson. 1981. Schooling of the scalloped hammerhead shark, Sphyrna lewini, in the Gulf of California. Fisheries Bulletin, 79(2): 356–360.

Klimley, P. A. & D.R. Nelson. 1984. Diel movement patterns of the scalloped hammerhead shark (Sphyrna lewini) in relation to el bajo Espiritu Santo: a refuging central-position social system. Behav Ecol. Sociobiol., 1-10.

Martínez-López, A., R. Cervantes-Duarte, A. Reyes-Salinas & J.E. Valdéz-Holguín. 2001. Cambio estacional de clorofila-a en la Bahía de La Paz, B.C.S., México. Hidrobiológica, 11(1): 45-52.

Menard, H.W. 1964. Marine Geology of the Pacific. McGraw-Hill, New York.

Muhlia-Melo, A. 1999. Reporte anual al CONACyT del proyecto “Estudio de la comunidad de peces pelágicos de importancia ecológica y comercial en las montañas submarinas de la porción sur del Golfo de California durante y posterior a El Niño”. 97 p.

Muhlia-Melo, A., A.P. Klimley, R. González-Armas, S. Jorgensen, A. Trasviña-Castro, J. Rodríguez-Romero & A. Amador Buenrostro. 2003. Pelagic fish assemblages at the Espíritu Santo seamount in the Gulf of California during El Niño 1997-1998 and non-El Niño conditions. Geofísica Internacional, 42(3): 473-481

Mullineaux, L. S. & S.W. Mills. 1997. A test of the larval retention hypothesis in seamount-generated flows. Deep Sea Research I, 44(5): 745-770

Pegau, W. S., E. Boss & A. Martínez. 2002. Ocean color observations of eddies during the summer in the Gulf of California. Geophysical Research Letters, 29(9): 1295. doi:10.1029/2001GL014076

Philander, S. G. 1990. El Niño, La Niña, and the Southern Oscillation. International Geophysics Series, Academic Press

Pinot, J.M. & J. Jansa. 2001. Time variability of acoustic backscatter from zooplankton in the Ibiza Channel (western Mediterranean). Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 48: 1651– 1670.

Rippeth, T.P. & J.H. Simpson. 1998. Diurnal signals in vertical motions on the Hebridean. Shelf. Limnol. Oceanogr., 43: 1690-1696.

Roden, G. I. 1986. Aspects of oceanic flow and thermohaline structure in the vicinity of seamounts. NOAA Technical Report NMFS3-12

Roden, G. I.& B.A. Taft. 1982. Effect of Emperor Seamounts on the mesoscale thermohaline structure during the summer of 1982. Journal of Geophysical Research, 90: 839–855.

Rodríguez-Romero, J., A.F. Muhlia-Melo, F. Galván-Magaña, F.J. Gutiérrez-Sánchez & V. Gracia-López. 2005. Fish assemblages around Espiritu Santo island and Espiritu Santo seamount in the lower Gulf of California, Mexico. Bull. Mar. Sci., 77(1): 33-50.

Samadi, S., T. Schlacher, & B.R. Forges. 2007. Seamount Benthos, In: Pitcher, T.J., T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos(eds). Seamounts: Ecology, Fisheries and Conservation. Blackwell Publishing, Oxford, U.K.

Thomson, D. A., L.T. Findley & A.N. Kerstitch. 2000. Reef fishes of the Sea of Cortez. University of Texas Press, Austin. 374 p.

Torres-Orozco, E. 1993. Análisis volumétrico de las masas de agua del Golfo de California. Tesis de Maestría. Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada, Baja California.

Trasviña-Castro, A., G. Gutiérrez de Velasco, A. Valle-Levinson, R. González-Armas, A. Muhlia & M.A. Cosío. 2003. Hydrographic observations of the flow in the vicinity of a shallow seamount top in the Gulf of California. Estuarine, Coastal and Shelf Science, 57: 149-162.

Trenberth, K. E. 1997. The definition of El Niño. Bulletin of the American Meteorological Society, 78(12): 2771–2777.

Valle-Levinson, A., A. Trasviña-Castro, G. Gutiérrez-de Velasco & R. González-Armas. (2004). Diurnal vertical motions over a seamount of the southern Gulf of California. Journal of Marine Systems, 50: 61-77

Verdugo-Díaz, G., R. Cervantes-Duarte & M.O. Albañez-Lucero. 2006. Variación estacional de la productividad primaria estimada por fluorescencia natural en el Bajo Espíritu Santo, B.C.S., México. Naturaleza y Desarrollo, 4(2): 35-40

Verdugo-Díaz, G., R. Cervantes-Duarte & M.O. Albañez-Lucero. 2008. Estimación de la productividad primaria en dos bajos de la parte sur del golfo de California, México. CICIMAR Oceánides, 23(1,2): 39-43

Wessel, P. 2007. Seamount characteristics. In: Pitcher, T.J., T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos (eds). Seamounts: Ecology, Fisheries y Conservation. Blackwell Publishing, Oxford, U.K.

Wolanski, E. & W.M. Hamner. 1988. Topographically controlled fronts in the ocean and their biological influence. Science, 241: 177-181.

Yamanaka, H. 1986. Oceanographic studies of seamounts. 13–18, In: Uchida N. R., S. Hayasi & G. W. Boehlert (Eds.). Environment and resources of seamounts in the North Pacific. Proceedings of a workshop. NOAA Technical Report NMFS 43.Seattle, WA.




DOI: http://dx.doi.org/10.37543/oceanides.v33i1.224

Refbacks

  • There are currently no refbacks.


CICIMAR Oceánides,  Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, CP. 23096 La Paz, Baja California Sur, México. Teléfono (52)6121230350 ext. 81527.   ISSN: 2448-9123,  otorgado por el Instituto Nacional del Derecho de Autor.