Growth Profiles, Nutrient composition and Pigments Analysis of Dunaliella salina strain San Quintin

Ricardo Valencia, Ivone Giffard-Mena, Ricardo Cruz-López, Ernesto García-Mendoza, José Luis Stephano-Hornedo


Some microalgae are recognized for producing pigments and other metabolites with biotechnological importance, particularly, <i>Dunaliella salina</i> is a remarkable one. These kind of compounds are used as food and have a great industrial potential. The pigment industry comprises a millionaire market value, being β-carotene one of the most profitable one. In this study we describe the morphology, molecular identification, growth dynamics, proximal composition, nutrients and pigment content of a recently isolated <i>Dunaliella salina</i> strain (SQ) under different salinity/light conditions, in order to highlight its remarkable properties for biotech/biomed industry. <i>D. salina</i> SQ reached the highest densities (1.07-1.25 cell mL-1 x106) at low salinities (100-500 mM NaCl) under continuous light regimen (24:0 h Light:Dark). Neoxanthin (Neo) and violaxanthin (Viol) were the most abundant pigments when exposed to 500 mM NaCl (18:6 h Light:Dark). Furthermore, this peculiar strain produces other compounds with high industrial value.

Perfiles de crecimiento, composición de nutrientes y análisis de pigmentos de <i>Dunaliella salina</i> cepa San Quintín



Algunas microalgas son reconocidas por producir pigmentos y otros metabolitos con importancia biotecnológica, en particular, <i>Dunaliella salina</i> es una de las más notables. Este tipo de compuestos se usan como alimento y tienen potencial industrial. La industria del pigmento tiene un valor de mercado millonario, siendo el β-caroteno uno de los más rentables. En este estudio se describe la morfología, la dinámica de crecimiento, composición proximal, composición de nutrientes y contenido de pigmentos de una cepa de <i>Dunaliella salina</i> (SQ) recientemente aislada. La identificación de la especie se corroboró mediante técnicas moleculares. Se cultivó a <i>D. salina</i> bajo diferentes condiciones de salinidad y luz, con el objetivo de resaltar sus propiedades para la industria biotecnológica y biomédica. <i>D. salina</i> SQ alcanzó las densidades más altas (1.07-1.25 células mL-1 x106) a salinidades bajas (NaCl 100 y 500 mM) en un régimen de luz continua. La neoxantina (Neo) y la violaxantina (Viol) fueron los pigmentos más abundantes en 500 mM NaCl y un ciclo de luz: oscuridad 18: 6 h. Además, esta peculiar cepa produce otros compuestos con alto valor industrial.


Dunaliella salina; green microalgae; pigments; sea salt fields; salinity challenge

Full Text:



AOAC, , 1990. Official methods of analysis 15th Ed, in Association of official analytical chemists, Washington, DC, USA.

Abomohra A. E. F., Jin, W., Tu, R., Han, S. F., Eid, M., & Eladel, H. (2016). Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renewable and Sustainable Energy Reviews, 64, 596–606.

Almazán-Becerril A., García-Mendoza E. (2008). Maximum efficiency of charge separation of photosystem II of the phytoplankton community in the Eastern Tropical North Pacific off México : A nutrient stress diagnostic tool ? Ciencias Marinas, 34(1), 29–43.

Abu-Rezq, T., Al-Hooti, S., & Jacob, D. (2010). Optimum culture conditions required for the locally isolated Dunaliella salina. J. Algal Biomass Utln, 1(July 2004), 12–19. Retrieved from

Andersen A. Robert. (2005). Algal Culturing Techniques. (Andersen A. Robert, Ed.).

Assunção, P., Jaén-Molina, R., Caujapé-Castells, J., Wolf, M., Buchheim, M. A., de la Jara, A., Mendoza, H. (2013). Phylogenetic analysis of ITS2 sequences suggests the taxonomic re-structuring of Dunaliella viridis (Chlorophyceae, Dunaliellales). Phycological Research, 61(2), 81–88.

Barzegari, A., Hejazi, M. A., Hosseinzadeh, N., Eslami, S., Mehdizadeh Aghdam, E., & Hejazi, M. S. (2010). Dunaliella as an attractive candidate for molecular farming. Molecular Biology Reports, 37(7), 3427–3430.

Belghith, T., Athmouni, K., Elloumi, J., Guermazi, W., Stoeck, T., & Ayadi, H. (2015). Biochemical Biomarkers in the Halophilic Nanophytoplankton: Dunaliella salina Isolated from the Saline of Sfax (Tunisia). Arabian Journal for Science and Engineering, 17–24.

Ben-Amotz, A. (1993). Production of B-Carotene and Vitamins by the Halotolerant Alga Dunaliella. In Marine Biotechnology (Vol. 1, pp. 411–417). New York.

Ben-Amotz, a, & Avron, M. (1983). On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. Plant Physiology, 72(3), 593–597.

Benavente-Valdés, J. R., Aguilar, C., Contreras-Esquivel, J. C., Méndez-Zavala, A., & Montañez, J. (2016). Strategies to enhance the production of photosynthetic pigments and lipids in chlorophyceae species. Biotechnology Reports, 10, 117–125.

Bligh E. G., Dyer W. J., (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917.

Borowitzka, M. A. (1990). Technical resource papers: The Mass Culture of Dunaliella salina. Retrieved from

Borowitzka, M. A. (1988). Algal Growth Media and Sources. In Micro-algal Biotechnology (pp. 456–465). Retrieved from

Borowitzka, M. A. (2013). High-value products from microalgae-their development and commercialisation. Journal of Applied Phycology.

Borowitzka, M. A., & Silva, C. J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19(5), 567–590.

Cade-Menun B. J., Paytan A. (2010). Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Mar Chem 121:27-36.

Cadoret, J. P., Garnier, M., & Saint-Jean, B. (2012). Microalgae, Functional Genomics and Biotechnology. Advances in Botanical Research (Vol. 64).

Cai, M., He, L. H., & Yu, T. Y. (2013). Molecular Clone and Expression of a NAD+-Dependent Glycerol-3-Phosphate Dehydrogenase Isozyme Gene from the Halotolerant alga Dunaliella salina. PLoS ONE, 8(4), 1–8.

Chen, Y., Xu T., Vijay R. K., Xu C. & Vaidyanathan S. (2015). Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina, Energy Conversion and Management. Elsevier Ltd, 106, pp. 61–72. doi: 10.1016/j.enconman.2015.09.025.

Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350-356.

Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science and Technology, 16(9), 389–406.

Farhat, N., Rabhi, M., Falleh, H., Jouini, J., Abdelly, C., & Smaoui, A. (2011). Optimization of salt concentrations for a higher carotenoid production in Dunaliella salina (Chlorophyceae). Journal of Phycology, 47(5), 1072–1077.

Fox J. (2017). Using the R Commander. A Point-and-Click Interface for R. CRC Press. CHAPMAN & HALL, USA.

Frank, H. A. & Cogdell, R. J. (1993) in Carotenoids in Photosynthesis, eds. Young, A. & Britton, G. (Chapman & Hall, London), pp. 252-326.

Ganesan V, S. H. (2014). Biomass from Microalgae: An Overview. Oceanography: Open Access, 2(1), 1–7.

Guevara M., Pinto R., Villarroel J., Hernández E., Díaz R., Gotera B. R. C. (2016) Influencia de la salinidad y la irradiancia sobre el crecimiento y composición bioquímica de una nueva cepa de Dunaliella salina , proveniente de las salinas de Araya, Venezuela, Saber, Universidad de Oriente, Venezuela., 28, pp. 494–501.

Goltekar R.C., Krishnan K.P., De Souza M.J.B.D., Paropkari A.L., Loka Bharathi P.A.

(2006). Effect of carbon source concentration and culture duration on retrievability of bacteria from certain estuarine, coastal and offshore areas around peninsular India. Curr. Sci. 90(1): 103–106.

Gonçalves A. L., Simões M., Pires J. C. M. (2014). The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Convers Manage 85:530-6.

Griffiths M.J., van Hille R. P., Harrison S. T. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001.

Guo-Zhong, J., Yu-Min, L., Xiang-Li, N., & Le-Xun, X. (2005). The actin gene promoter-driven bar as a dominant selectable marker for nuclear transformation of Dunaliella salina. Acta Genetica Sinica, 32(4), 424–433.

Heukelem, L. Van, & Thomas, C. S. (2001). Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments, Journal of Chromatography A, 910, 31–49.

Jackson, M.L. (1973). Soil Chemical Analysis. Prentice-Hall of India Pvt. Ltd., New Delhi, India, pp 111-204.

Jayappriyan K. R., Rajkumar, R., Kannan, P. R., Divya, S., & Rengasamy, R. (2010). Significance of 18S rDNA specific primers in the identification of genus Dunaliella, 1(1), 27–31.

Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L., & Bruff, B. S. (1968). Effects of salts on the halophilic alga Dunaliella viridis. Journal of Bacteriology, 95(4), 1461–1468.

Kaçka, A., & Dönmez, G. (2008). Isolation of Dunaliella spp. from a hypersaline lake and their ability to accumulate glycerol. Bioresource Technology, 99(17), 8348–52.

Kadkhodaei, S., Ariff, A. B., & Memari, H. R. (2011). Construction of an expression vector for production of tissue plasminogen activator ( t-PA ) in a transgenic microalgae bioreactor, 11, 193–196.

Kotake-Nara, E., Kushiro, M., Zhang, H., Sugawara, T., Miyashita, K., & Nagao, a. (2001). Carotenoids affect proliferation of human prostate cancer cells. The Journal of Nutrition, 131(12), 3303–3306.

Lamers, P. P., Janssen, M., De Vos, R. C. H., Bino, R. J., & Wijffels, R. H. (2008). Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends in Biotechnology, 26(11), 631–638.

Loeblich, L. (1982). Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). Journal of the Marine Biological Association of the UK, 62, 493–508.

Lopez, H., Magdaleno, D., & Stephano, J. (2017). The complete chloroplast genome of the green microalgae Dunaliella salina strain SQ. Mitochondrial DNA Part B, 2(1), 225–226.

Lowry O. H., Rosebrough H. J., Farr A. L., Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275.

Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., & Benemann, J. R. (2010). A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy, October(October), 1–14.

Magdaleno, D., Lopez H. & Stephano J. (2017). The complete mitochondrial genome of the green microalgae Dunaliella salina strain SQ. Mitochondrial DNA Part B, 2(1), 225–226.

Niyogi, K. K., Bjorkman, O. and Grossman, A. R. (1997). The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences, 94(25), pp. 14162–14167. doi: 10.1073/pnas.94.25.14162.

Olmos-Soto, J., Paniagua-Michel, J., Contreras, R., & Trujillo, L. (2002). Molecular identification of β-carotene hyper-producing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotechnology Letters, 24(5), 365–369.

Olmos, J., Ochoa, L., Paniagua-Michel, J., & Contreras, R. (2009). DNA fingerprinting differentiation between beta-carotene hyperproducer strains of Dunaliella from around the world. Saline Systems, 5, 5.

Olmos, J., Paniagua, J., & Contreras, R. (2000). Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Letters in Applied Microbiology, 30(1), 80–84.

Oren, A. (2005). A hundred years of Dunaliella research: 1905-2005. Saline Systems, 1, 2.

Pancha, I., Chokshi, K., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2015). Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 193, 315–323.

Paniagua-Michel, J., Capa-Robles, W., Olmos-Soto, J., & Gutierrez-Millan, L. E. (2009). The carotenogenesis pathway via the isoprenoid-beta-carotene interference approach in a new strain of Dunaliella salina isolated from Baja California México. Marine Drugs, 7(1), 45–56.

Pasquet, V., Morisset, P., Ihammouine, S., Chepied, A., Aumailley, L., Berard, J. B., … Picot, L. (2011). Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Marine Drugs, 9(5), 819–831.

Pisal, D. S., & Lele, S. S. (2005). Carotenoid production from microalga, Dunaliella salina. Indian Journal of Biotechnology, 4(4), 476–483.

Powtongsook, S., Kittakoop, P., Menasveta, P., & Wisessang S. (1995). Isolation and characterization of Dunaliella salina from Thailand. Journal of Applied Phycology, 7(1), 75–76. Retrieved from

Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648.

Rad, F. A., Aksoz, N., & Hejazi, M. A. (2011). Effect of salinity on cell growth and β -carotene production in Dunaliella sp . isolates from Urmia Lake in northwest of Iran. African Journal of Biotechnology, 10(12), 2282–2289.

Rappé, M. S., Connon, S. A., Vergin, K. L., and Giovannoni, S. J. 2002. Cultivation of the ubiquitous SAR 11 marine bacterioplankton clade. Nature 418:630–3

Reber L.A. & Wallace M. M. (1937). Chlorides and Bromides. Analytical Edition, 167(1), 1937.

Richmond A. & Hu Q. (2013). Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Second Edition. Wiley-Blackwell. ISBN 9780470673898, 9781118567166. 726 p.p.

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press.

Soontornchaiboon, W., Joo, S. S. & Kim, S. M. (2012). Anti-inflammatory Effects of Violaxanthin Isolated from Microalga Chlorella ellipsoidea in RAW 264.7 Macrophages. Biological and Pharmaceutical Bulletin, 35(July), 1137–1144.

Speight, J. G. (2013). The chemistry and technology of coal. Fuel and Energy Abstracts, 36(3), 835.

Thaipratum R., Melis A., Svasti J., Yokthongwattana K. (2009). Analysis of non- photochemical energy dissipating processes in wild type Dunaliella salina (green algae) and in zea1, a mutant constitutively accumulating zeaxanthin, J. Plant Res. 122: 465–476.

Tran D., Trung V., Portilla S., Louime C., Doan N., Mai T., Tran D. and Ho T. (2013). Phylogenetic Study Of Some Strains Of Dunaliella. American Journal of Environmental Sciences, 9(4), 317–321.

Tokuşoglu, O., & Uunal, M. K. (2003). Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrysis galbana. Journal of Food Science, 68(4), 1144–1148.

Walkley A. & Black I.A. (1934). An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63:251-263.

Wen, Z. Y., & Chen, F. (2003). Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21(4), 273–294.

Widowati, W., & Asnah, A. (2014). Biochar Effect At Potassium Fertilizer and Dosage Leaching Potassium for Two-Corn Planting Season. AGRIVITA Journal of Agricultural Science, 36(1), 65–71. Retrieved from

Wilcox, L. W., Lewis, L. a, Fuerst, P. a, & Floyd, G. L. (1992). Group I introns within the nuclear-encoded small-subunit rRNA gene of three green algae. Molecular Biology and Evolution, 9(6), 1103–18. Retrieved from

Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., & Takriff, M. (2014). An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki, 21(1), 6.



  • There are currently no refbacks.

CICIMAR Oceánides,  Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, CP. 23096 La Paz, Baja California Sur, México. Teléfono (52)6121230350 ext. 81527.   ISSN: 2448-9123,  otorgado por el Instituto Nacional del Derecho de Autor.